If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2+13m-4=2
We move all terms to the left:
m^2+13m-4-(2)=0
We add all the numbers together, and all the variables
m^2+13m-6=0
a = 1; b = 13; c = -6;
Δ = b2-4ac
Δ = 132-4·1·(-6)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{193}}{2*1}=\frac{-13-\sqrt{193}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{193}}{2*1}=\frac{-13+\sqrt{193}}{2} $
| -x-1-3x=-2x+14 | | |x+2|+5=12 | | -9x+3=11x-57 | | 8(x-2)=8×-16 | | 0.10(y-5)+0.02y=0.16y-0.4 | | -20=b/2-20 | | 6=3+x-10 | | 2=1/2-6+a | | 5(2x+4)=7x+2 | | -8(b+4)+14=-6b+2(-1-9b) | | 11(k-2)=-143 | | -2.3=1.1x | | -4(1+5x)=-104 | | 40−6y=28 | | 12x+4x=2x | | 2(5-4.5)+15=4x | | 12a=‐192 | | -10+a-1=7-5 | | x2–12=-14 | | -1(t+8)=-71 | | 7x-11-4=6 | | –1−2d=–d | | 8(x-6)-8×=-18+6× | | 2(10x-5)=50 | | 8x−7=5x+2 | | 6(a-8)=12 | | g+3/5=4/7 | | 64-x=-92 | | 12584/2516}g=0 | | 12x+2x=1x | | x−10=3 | | 5+3m−8m=–9−3m |